
Abstract Vibrational spectra of cyclohexanecarboxalde-
hyde are calculated with density functional theory using
the B3LYP functional together with a 6-311++G** basis
set and presented. The results in the case of the infrared
spectrum of the mixture of conformers at 300 K are com-
pared with the experimental spectrum and, apart from
the intensities of the CH and CO stretches, reasonable
agreement is found. These deficiencies can be traced
back to the well-known nonlinearities in case of CH
stretches and the CO stretch. Potential energy distribu-
tions among symmetry coordinates in each normal mode
are presented and used to assign specific atomic move-
ments to each of the modes. Potential energy scans for
the CHO rotor in both the axial and equatorial conform-
ers are presented and barrier heights are compared with
previous Hartree–Fock calculations and experimental da-
ta. It is reported that there could be three stable conform-
ers, namely equatorial-gauche (eg), which is the most
stable, equatorial-trans (et) and axial-gauche (ag). The
optimized energies of all the minima and of the transi-
tion states are presented. However, comparison of the
calculated spectrum with the experimental one indicates
that total energies are slightly in error and that in the
mixture of conformers no ag is present and thus the et to
eg ratio is also different. Using experimental values for
relative energies of conformers, we could obtain spectra
in fair agreement with experiment. This indicates that
when only total energy differences are calculated, slight
errors in them play a role because of the very small rela-
tive energies in this case, while properties like geome-
tries and spectra, which depend not on energy differ-
ences but on analytically calculated energy derivatives,
are not affected.
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spectra · Potential energy distributions · Potential scans ·
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Introduction

The conformational stability of a series of saturated and
unsaturated ring compounds of the general formula
R–CXO has been investigated by ab initio calculations
as well as by experimental techniques such as rotational
and vibrational spectroscopy. [1, 2, 3, 4, 5, 6, 7, 8] Here
R represents cyclopropane, cyclobutane, cyclopentene,
cyclopentane, or cyclohexane rings, while X denotes hy-
drogen, fluorine, or chlorine. In the case of cyclopropane
as R, the carbonyl oxygen was found to eclipse the three-
membered ring in the gas phase as a result of a reso-
nance stabilization, while it eclipses the ring hydrogen in
the condensed phase because of the influence of intermo-
lecular forces. [6] In contrast, in the unsaturated 3-cyclo-
propenecarboxaldehyde and its fluorine derivative, it
was found that the lowest energy conformer is the one
where the carbonyl oxygen eclipses the α-hydrogen
(trans conformer) and not the ring. [8] This is due to the
fact that in the latter case the frontier orbital interactions
in the molecule have a destabilizing effect.

Higher order cyclic molecules with N atoms in the
ring exhibit N–3 out-of-plane ring vibrations that deter-
mine the conformation of the ring. In the case of cyclo-
butanes the puckered ring with an equatorial substituent
in the gauche conformation was found to be the most
stable one. [1, 2, 3] The conformational behavior of 
4-cyclopentenecarboxaldehyde is similar to that of cy-
clobutanecarboxaldehyde, both having the ring-pucker-
ing vibration as the only ring motion that gives rise to
axial and equatorial conformations of the ring. In recent
ab initio calculations, it was found that the molecule
should exist as a complex mixture of equatorial and axi-
al forms at ambient temperature. [9] From an ab initio
calculation of the structures of cyclopentanecarboxalde-
hyde and cyclopentanecarbocylic acid fluoride, a twisted
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ring with the substituent in the gauche conformation was
predicted to be the lowest energy form of the com-
pounds. [4, 5]

The conformational isomerism of cyclohexanecarbox-
aldehyde has been investigated by rotational spectrosco-
py. [10] Two stable isomers were found, both having the
ring in a chair structure and trans and gauche conforma-
tions of the aldehyde substituent. No band series corre-
sponding to an axial conformation could be identified.
The data were in good agreement with recent ab initio
calculations (Hartree–Fock, HF, and correlation calcula-
tions, such as MP2 and MP3). In these calculations the
gauche conformer was found to be lower in energy than
the trans one, [7] consistent with experimental data. [10]

In the present work we report calculated potential
curves for the torsion of the aldehyde group as well as
equilibrium geometries of the stable conformers and vib-
rational wavenumbers together with infrared and Raman
intensities. Further, we have determined the distribution
of the potential energy in the different normal modes
among a set of motions defined by symmetry coordinates
and report this potential energy distribution (PED). The
infrared spectrum calculated at 300 K is compared to the
experimental one. Fair agreement is found when the ex-
perimental relative energies of the conformers are used
to determine their abundance in the mixture at 300 K.

Potential energy curves and equilibrium structures

The Gaussian98 program [11] running on an IBM
RS/6000 P43 model 260-H70 workstation was used to
carry out the necessary ab initio calculations. We used
the 6-311++G** basis set, which is a valence triple zeta
basis augmented with polarization and diffuse functions
on hydrogen, carbon, and oxygen. As we will discuss be-
low, this rather extended basis set gives some problems
as far as total energy differences are concerned, but
yields equilibrium geometries and spectra in fair agree-
ment with experiment. The basis set was used generally
for our calculations using density functional theory
(DFT) together with the Becke 3 (B3) exchange and the
Lee–Yang–Parr (LYP) correlation functional, as imple-
mented in the program. [11] One has to note that in order
to correct some shortcomings in the LYP functional, the
program uses a combination of the LYP together with the
Vosco–Nuzair–Wilks (VNW) correlation functional un-
der the keyword B3LYP. [11]

In Fig. 1 we show a sketch of the equatorial-trans (et)
conformation to define the atom numbering used
throughout this text. A scan of the potential energy as
function of the torsional angle ϕ suggested the presence
of four energy minima, namely equatorial-gauche (eg),
ϕ=64.3°, equatorial-trans (et), ϕ=180°, axial-gauche
(ag), ϕ=72.6°, and axial-trans (at), together with four
maxima, namely equatorial-cis (ec), the eg→et transi-
tion state (ets), the corresponding ats transition state and
axial-cis (ac). The scans are plotted in Fig. 2a and b. We
started out from the appropriate optimized cis form (ec

and ac, respectively) and varied the aldehydic torsional
angle ϕ, performing single point calculations at each val-
ue. The results are plotted in the two figures as solid
lines. Then at the suggested extremal points we per-
formed full geometry optimization and added the zero-
point energies. These results are plotted as shaded cir-
cles. The optimizations had two immediate consequenc-
es. First of all eg becomes lower in energy than et, in
agreement with experiment, and further the shallow at
minimum changes to a maximum, leaving the axial
curve with one minimum (ag) and two maxima (ac, at). 

In Table 1 we show the optimized structural parame-
ters for the three minima of the potential together with
their experimental values. [10] For the sake of compari-
son we also show values of these parameters for the et
conformer, obtained with the restricted Hartree–Fock
(RHF) and the second order Møller–Plesset (MP2) meth-
od for the introduction of correlation corrections, using
the same basis set. The mean square deviation between
DFT results and experimental values is 0.009 Å for bond
lengths and 2.5° for bond angles. Average mean square
deviations for 32 molecules between DFT-BLYP results
and experimental ones have been published [12] and are
0.020 Å for bond lengths and 2.33° for bond angles.
Thus the deviations we obtain are roughly of the same
order as experience would suggest. We conclude from
this that the geometrical data we have obtained agree
rather well with experiment. For the sake of comparison,
in the et case the mean square deviations between MP2
and DFT are 0.005 Å and 0.89°, respectively. This is
again evidence that DFT results are roughly as reliable
as MP2 ones. Between RHF and DFT deviations are
0.011 Å and 0.25°.

Table 2 shows the resulting energies and relative en-
ergies, together with dipole moments and rotational con-
stants for the extremal points we have located on the po-
tential surface. While rotational constants are in reason-
able agreement with their experimental values, [10] two
major discrepancies immediately catch the eye when

Fig. 1 Sketch of the molecular structure of the equatorial-trans
conformer of cyclohexanecarboxaldehyde, defining the numbering
of the atoms used later on
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looking at Table 2. First of all, there is no ag conformer
found experimentally, suggesting that its energy should
be much higher than our calculations predict. Further the
energy difference of 0.16 kcal mol–1 for the eg and et
conformers is much smaller than the experimental value
of 0.72 kcal mol–1. Also the ec maximum is in our calcu-
lations lower at 1.34 kcal mol–1 than found experimen-
tally (1.65 kcal mol–1). The same effect is seen in
Fig. 2c, where Fourier fits of the extremal points are
plotted for both the DFT (dashed line) and experimental
values [10] (solid line). It is clear from the comparison
that here we have the same problem. Figure 2d shows
the corresponding axial case. In Table 3 the coefficients
obtained in such fits are shown. It is obvious that the
first order coefficient in eq2 differs drastically from the

corresponding one in the experimental fit, while the oth-
er two are in moderate agreement. 

We now discuss why such a disagreement with exper-
iment could appear, considering on the other hand the
good agreement between geometrical data and experi-
ment. Inspection of RHF outputs of all the conformers
shows clearly where the reason lies. In all RHF outputs
the Gaussian98 program issues a warning that large MO
(molecular orbital) coefficients appear (104.6 in eg and
109.1 in et). Looking at the energy differences including
zero-point energies between eg and et for RHF calcula-
tions in different basis sets we have the sequence 1.50,
0.57, 0.50, and 0.14 kcal mol–1 for the basis sets 3-21G
(96 basisfunctions), 6-31G* (136 basisfunctions), [7] 
6-311G* (180 basisfunctions), [13] and 6-311++G**

Fig. 2a–d Plots of the relative
(to the respective cis maxima)
potential energy (in kcal mol–1)
of cyclohexanecarboxaldehyde
calculated with the help of the
DFT method with the B3LYP
functional. a Starting from the
optimized ec geometry the tor-
sional angle ϕ was varied and
single point calculations per-
formed for each of its values
(solid line). Then for the sug-
gested extrema full geometry
optimizations were performed
(shaded circles, zero-point en-
ergies included).b Starting
from the optimized ac geome-
try the torsional angle ϕ was
varied and single point calcula-
tions performed for each of its
values (solid line). Then for the
suggested extrema full geome-
try optimizations were per-
formed (shaded circles, zero-
point energies included).c Plots
of a fit of a Fourier series to the
optimized energy values (zero-
point energies included) at the
extrema obtained by DFT cal-
culations (dashed line) and
those obtained by rotational
spectroscopy [10] (solid line).
d Similar fit to the DFT data
(optimized structures) for the
axial form
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(260 basisfunctions, this work), respectively. Only in the
last of these basis sets do warnings about large MO coef-
ficients appear, and we observe a drastic fall of the rela-
tive energy after a series of three values, converging
smoothly with increasing size of the basis set. Such large
MO coefficients usually suggest that there are linear de-
pendencies in our basis set. Such warnings do not appear

in the DFT calculations. However, here we also expect
small errors in total energy due to basis set problems.

Such errors will have a dramatic effect on the relative
energies of different conformers, especially in our case,
with the experimental barrier being as low as
0.72 kcal mol–1. Keeping in mind that in order to obtain
such relative energies, one has to subtract two total ener-

Table 1 Optimized structural
parameters (see Fig. 1 for atom
numbering and denotation of
the symbols used for some of
the parameters) of cyclohex-
anecarboxaldehyde for the
three stable conformers, i.e.
equatorial-trans (et), equatori-
al-gauche (eg) and axial-
gauche (ag), calculated with
different methods (RHF, MP2
and DFT), but all using the
same basis set (6-311++G**).
The experimental values (col-
umn headed “exp.”) are taken
from [10]

Parameter et et et eg ag exp
RHF MP2 DFT DFT DFT

Bond lengths (Å)
C(1) C(2) 1.538 1.538 1.546 1.544 1.544 1.526
C(2) C(4) 1.531 1.532 1.535 1.536 1.536 1.526
C(4) C(6) 1.530 1.531 1.534 1.536 1.535 1.526
C(7) C(1) 1.508 1.506 1.510 1.513 1.519 1.501
C(7) O(8) 1.184 1.217 1.207 1.207 1.206 1.216
C(7) H(9) 1.100 1.114 1.115 1.114 1.115 1.114
C(1) H(10) 1.086 1.098 1.095 1.104 1.102 1.096
C(2) H(11) 1.090 1.100 1.098 1.097 1.096 1.096
C(4) H(15) 1.087 1.096 1.095 1.095 1.098 1.096
C(6) H(19) 1.090 1.099 1.098 1.098 1.095 1.096

Bond angles (deg)
C(2) C(1) C(3) 110.8 110.4 110.8 111.7 112.2 112.3
C(4) C(6) C(5) 111.3 110.9 111.3 111.5 111.2 112.3
C(1) C(7) O(8) 125.1 125.2 125.4 125.5 125.9 123.9
C(1) C(7) H(9) 115.1 114.5 114.6 114.5 114.2 117.5
C(1) C(2) H(11) 109.3 109.0 109.2 108.8 110.1
C(6) C(4) H(15) 110.3 110.5 110.4 110.3 109.1
H(11) C(2) H(12) 106.8 107.2 106.7 106.8 106.4
H(15) C(4) H(16) 106.6 107.0 106.5 106.5 106.3
H(19) C(6) H(20) 106.6 107.0 106.5 106.5 106.5 106.7
C(7) C(1) H(10) 107.0 107.5 107.2 104.7 103.3
θ1 127.2 126.1 126.9 131.9 132.7
θ2 125.9 125.3 125.8 125.7 127.6
β1 49.6 50.6 49.2 49.6 46.1 52.4
β2 49.4 50.8 49.3 49.3 50.1 52.4

Dihedral angles (deg)
H(10) C(1) C(2) C(4) 114.3 114.8 113.7 115.9 9.6
H(11) C(2) C(4) C(6) 114.2 116.1 114.1 114.4 3.3
O(8) C(7) C(1) H(10) 180.0 180.0 180.0 64.3 72.6 60.0

Table 2 Total energies, EDFT, and zero-point energies, E0, (in H),
relative energies, ∆E (relative to equatorial-gauche, eg), in
kcal mol–1, total dipole moments µ in Debye, rotational constants
(A, B, and C) in GHz and barriers to internal rotation, ∆E (et→eg)

and ∆E (eg→et) through ets, in kcal mol–1. Experimental data are
taken from [10]. In the denotations of the conformers e denotes
equatorial, a axial, c cis, t trans, g gauche, and ts transition state.
eg, et and ag represent minima, all others are maxima

Con- EDFT E0 ∆E µ A B C ∆E
former

DFT exp DFT exp DFT exp DFT exp DFT exp

eg→et
eg –349.295864 0.178262 0.00 0.00 3.02 3.948 3.952 1.410 1.424 1.123 1.137 1.13 1.89

et→eg
et –349.295787 0.178435 0.16 0.72 3.37 4.111 4.132 1.317 1.328 1.081 1.090 0.97 1.17

(HF: 0.14)
ec –349.293719 0.178251 1.34 1.65 2.83 3.797 1.439 1.190
ets –349.294048 0.178251 1.13 3.16 4.076 1.343 1.084
ag –349.294532 0.178482 0.97 2.79 3.014 1.741 1.456

(HF: 1.15)
ac –349.290611 0.178388 3.38 2.50 2.822 1.820 1.651
at –349.291492 0.178401 2.83 3.36 3.440 1.493 1.267
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gies from each other, which are of the order of
0.2 Gcal mol–1 to yield just a value of the order of a
kcal mol–1 or less. From this it is obvious that the slight-
est irregularities in the basis set could affect such relative
energies drastically, which is what actually happens here.

On the other hand, properties like equilibrium geome-
tries, vibrational wavenumbers, and spectral intensities
are not calculated by forming differences of large num-
bers, but are obtained from analytically calculated deriv-
atives of the total energy. Thus we expect that only rela-
tive energies are affected by the basis set problem, while
other properties are not, as we have seen already in case
of the equilibrium geometries.

Potential energy distributions

The molecule in the symmetric trans conformation has
Cs symmetry. Thus, the 54 vibrational modes span the ir-
reducible representations: 31 A’ and 23 A”. The A’
modes should be polarized in the Raman spectrum of the
liquid. The gauche conformer has C1 symmetry and
therefore all the vibrational modes belong to the A repre-
sentation and should be polarized in the Raman spectrum
of the liquid.

We carried out normal coordinate analyses for the eg,
et, and ag conformers of the molecule to provide an as-
signment of the fundamental vibrational wavenumbers to
the types of atomic motion occurring in the molecule.
For this end we followed Wilson’s textbook, [14] The
Cartesian coordinates of the stable conformers were tak-
en together with the normal modes (in Cartesian coordi-
nates) and their corresponding wavenumbers from the
output of the Gaussian98 program. An overcomplete set
of internal coordinates (Table 4) was used to set up sym-
metry coordinates (Table 5) for the molecule. The set of
internal coordinates is overcomplete, just to make it easi-
er to build the required atomic motions for the symmetry

coordinates. The redundant internal coordinates are de-
tected and removed automatically by our program (see
the Appendix for a short outline of the procedure), both
from the set of internal and symmetry coordinates. Fur-
ther, it is checked that the remaining independent inter-
nal coordinates form a complete set that can be used to
construct all possible internal motions of the molecule.
Note that in Table 4 the internal coordinate I(61) for the
aldehydic torsion is not a primitive torsional coordinate,
but a combined one, so that it describes the rotation of
the CHO group as a whole. 

The normal modes were transformed to mass-weight-
ed Cartesian coordinates, which were then used to calcu-
late the force constant matrix. Following this step, the
force constant matrix in mass weighted Cartesian coordi-
nates was transformed to the force constant matrix in in-
ternal coordinates, which was then finally transformed to
symmetry coordinates. In the program all these transfor-
mation steps were automatically checked in both direc-
tions. In the next step the normal modes were also trans-
formed from Cartesian to symmetry coordinates. Togeth-
er with the vibrational wavenumbers, the force constant
matrix and the normal coordinate coefficients, both in
symmetry coordinate space, were used to calculate the
distribution of potential energy in a normal mode among
all the symmetry coordinates (PED). The results for the
three stable conformers are given in Table 6. The table
gives the wavenumber k of all the modes together with a
numbering and the symmetry label. Infrared intensities
and Raman activities, together with the depolarization
factors and the assignment to the symmetry coordinates
in % of the total potential energy due to the symmetry
coordinates in each normal mode, are also given.

At this point we would like to discuss some of the as-
signments in more detail because the structure and con-
formational behaviors of substituted cyclohexanes have
been of interest for many years. [15, 16, 17, 18, 19, 20,
21, 22] The conformational equilibrium of halocyclohex-

Table 3 Coefficients Vk (in kcal mol–1) for fits of potential ener-
gies as functions of the torsional angle ϕ of the CHO group to the
Fourier series where the fitted

potential energies are relative to their value at ϕ = 0. The first two
columns (equatorial1 and axial1) are the fits of the DFT energies as

shown in Fig. 2a and b, the second and third columns (eq2 and
ax2) are fits to four points each, which are obtained by full geome-
try optimizations at the extremal points, including the zero point
vibrational energies. The fifth column (exp) gives a corresponding
fit of experimental results from [10] (accuracy roughly
0.2 kcal mol–1)

k eq1 ax1 eq2 ax3 exp

0 –0.003 –0.126 0.000 0.000 0.000
1 –0.144 0.384 –0.036 –0.978 0.640
2 0.111 –1.677 –0.249 –2.687 –0.320
3 –1.002 –0.898 –1.146 0.434 –1.570
4 –0.247 0.070
5 0.478 0.108
6 0.175 0.110

root mean square deviations:
0.004 0.007 0.000 0.000 0.000

total energies at cis positions:
–349.293719 H –349.290611 H –349.115468 H –349.112210 H



anes, for example, has been investigated by a variety 
of theoretical and experimental methods. [19, 20, 22]
Fluoro-, chloro-, bromo-, and iodocyclohexanes have
been studied and the equatorial conformation of all these
molecules was determined to be the lowest energy form
in the condensed phase. The corresponding aldehyde
compound (C7H12O) has been studied by microwave
spectroscopy and both identified conformers (trans and
gauche) could be shown to have the aldehydic substitu-
ent in the equatorial position, just as in the halocyclo-
hexanes. From relative intensity measurements, the
gauche form was determined to be by 0.72 kcal mol–1

more stable than the trans conformer, and the rotational
barrier height, corresponding to the cis position of the
CHO group, was found to be above 1.70 kcal mol–1. [10]
This is consistent with earlier ab initio calculations. [7]
Our DFT results do not agree with experiment, as far as
relative energies are concerned, as discussed above.
However, spectral properties should still be described
well. 

Theoretically, 12 of the 54 fundamentals are CH
stretches, one of which is from the aldehydic group. All
these stretches were calculated to have the highest Ra-
man activities for all the conformers. In the following,
gauche and trans refer to the eq and et conformations,
respectively. The lowest calculated wavenumber of the
CH stretches is the aldehydic CH stretch at 2849 cm–1

(eg) in moderate agreement with the corresponding one
observed at 2731 cm–1 in the Raman spectrum of cyclo-
butanecarboxaldehyde. [3] Note that, as discussed below,
wavenumbers of CH stretches are more in error than
those of other vibrations due to anharmonicities in their
potentials. In the ring CH stretching and bending modes
we see that their potential energy is distributed over
quite a few symmetry coordinates. Thus, there is a tre-
mendous mixing of motions in each mode, with one ex-
ception, the α-CH stretch, which appears almost pure at
2951 cm–1 in the gauche conformer. This is not the case
in the other conformers, where α-CH stretch appears
mixed with other motions throughout. However, the 
α-CH stretch is the dominant contribution to mode num-
ber 49 in the trans conformer (73%) at 3038 cm–1. As
one sees in Table 6, but also in the spectra discussed be-
low, the most intense Raman lines in the spectra of all
the conformers are the ring breathing modes. These ap-
pear at 760 cm–1 [47% S(25)] in the gauche conformer
and at 801 cm–1 (49%) in trans. This result agrees fairly
well with the line observed at 797 cm–1 in liquid fluoro-
cyclohexane. [20]

The assignments of the vibrational modes associated
with the aldehydic group can be based on their PED val-
ues and on comparison with the corresponding ones in
cyclobutanecarboxaldehyde. [3] The CO stretching mode
appears nearly pure (91%) in the gauche conformer at
1795 cm–1 and at 1794 cm–1 (91%) in trans. This is con-
sistent with the line observed at 1739 cm–1 in cyclobu-
tanecarboxaldehyde. [3] As also found there, this line is
the strongest feature in the infrared spectrum. The CC
stretch in cyclobutanecarboxaldehyde was assigned to
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Table 4 Internal coordinate definitions (for atom denotation see
Fig. 1) for cyclohexanecarboxaldehyde

Coordinate Definition

C(1) C(3) stretch I(1)
C(1) C(2) stretch I(2)
C(2) C(4) stretch I(3)
C(4) C(6) stretch I(4)
C(5) C(6) stretch I(5)
C(3) C(5) stretch I(6)
C(1) C(7) stretch I(7)
C(1) H(10) stretch I(8)
C(2) H(11) stretch I(9)
C(2) H(12) stretch I(10)
C(4) H(15) stretch I(11)
C(4) H(16) stretch I(12)
C(6) H(19) stretch I(13)
C(6) H(20) stretch I(14)
C(5) H(17) stretch I(15)
C(5) H(18) stretch I(16)
C(3) H(13) stretch I(17)
C(3) H(14) stretch I(18)
C(7) O(8) stretch I(19)
C(7) H(9) stretch I(20)
C(2) C(1) C(3) bend I(21)
C(4) C(2) C(1) bend I(22)
C(6) C(4) C(2) bend I(23)
C(5) C(6) C(4) bend I(24)
C(3) C(5) C(6) bend I(25)
C(1) C(3) C(5) bend I(26)
H(11) C(2) H(12) bend I(27)
H(15) C(4) H(16) bend I(28)
C(7) C(1) H(10) bend I(29)
H(19) C(6) H(20) bend I(30)
H(19) C(6) H(20) bend I(30)
H(17) C(5) H(18) bend I(31)
H(13) C(3) H(14) bend I(32)
C(7) C(1) C(2) bend I(33)
C(7) C(1) C(3) bend I(34)
C(2) C(1) H(10) bend I(35)
C(3) C(1) H(10) bend I(36)
C(1) C(2) H(11) bend I(37)
C(4) C(2) H(11) bend I(38)
C(1) C(2) H(12) bend I(39)
C(4) C(2) H(12) bend I(40)
C(2) C(4) H(15) bend I(41)
C(6) C(4) H(15) bend I(42)
C(2) C(4) H(16) bend I(43)
C(6) C(4) H(16) bend I(44)
C(4) C(6) H(19) bend I(45)
C(5) C(6) H(19) bend I(46)
C(4) C(6) H(20) bend I(47)
C(5) C(6) H(20) bend I(48)
C(6) C(5) H(17) bend I(49)
C(3) C(5) H(17) bend I(50)
C(6) C(5) H(18) bend I(51)
C(3) C(5) H(18) bend I(52)
C(1) C(3) H(13) bend I(53)
C(5) C(3) H(13) bend I(54)
C(1) C(3) H(14) bend I(55)
C(5) C(3) H(14) bend I(56)
C(1) C(7) O(8) bend I(57)
C(1) C(7) H(9) bend I(58)
H(9) C(7) O(8) bend I(59)
H(9) C(7) C(1) O(8) wag I(60)
[H(9) C(7) C(1) H(10)+O(8) C(7) C(1) torsion I(61)
H(10)+H(9) C(7) C(1) C(2)+O(8) C(7) C(1) 
C(2)+H(9) C(7) C(1) C(3)+O(8) C(7) C(1) C(3)]



294

Table 5 Symmetry coordinates
(S, not normalized) for cyclo-
hexanecarboxaldehyde

Species A’ in trans or A in gauche conformers
S(1)=I(7) C–C stretch
S(2)=I(8) α-CH symmetric stretch
S(3)=I(9)–I(10)+I(17)–I(18) β-CH2 antisymmetric stretch
S(4)=I(9)+I(10)+I(17)+I(18) γ-CH2 symmetric stretch
S(5)=I(11)–I(12)+I(15)–I(16) γ-CH2 antisymmetric stretch
S(6)=I(11)+I(12)+I(15)+I(16) γ-CH2 symmetric stretch
S(7)=I(13)–I(14) δ-CH2 antisymmetric stretch
S(8)=I(13)+I(14) δ-CH2 symmetric stretch
S(9)=I(20) C–Hald stretch
S(10)=I(19) C=O stretch
S(11)=2×I(29)–I(35)–I(36) α-CH in-plane bend
S(12)=4×I(27)–I(37)–I(38)–I(39)–I(40) β-CH2 deformation

+4×I(32)–I(53)–I(54)–I(55)–I(56)
S(13)=I(37)–I(38)+I(39)–I(40)+I(53)–I(54)+I(55)–I(56) β-CH2 wag
S(14)=I(37)–I(38)–I(39)+I(40)+I(53)–I(54)–I(55)+I(56) β-CH2 twist
S(15)=I(37)+I(38)–I(39)–I(40)+I(53)+I(54)–I(55)–I(56) β-CH2 rock
S(16)=4×I(28)–I(41)–I(42)–I(43)–I(44) γ-CH2 deformation

+4×I(31)–I(49)–I(50)–I(51)–I(52)
S(17)=I(41)–I(42)+I(43)–I(44)–I(49)+I(50)–I(51)+I(52) γ-CH2 wag
S(18)=I(41)–I(42)–I(43)+I(44)–I(49)+I(50)+I(51)–I(52) γ-CH2 twist
S(19)=I(41)+I(42)–I(43)–I(44)+I(49)+I(50)–I(51)–I(52) γ-CH2 rock
S(20)=4×I(30)–I(45)–I(46)–I(47)–I(48) δ-CH2 deformation
S(21)=I(45)+I(46)–I(47)–I(48) δ-CH2 rock
S(22)=I(58)–I(59) C–Hald in-plane bend
S(23)=I(58)+I(59)–2×I(57) CCO in-plane bend
S(24)=3×I(33)+3×I(34)–2×I(29)–2×I(35)–2×I(36) ring-CHO bend
S(25)=I(1)+I(2)+I(3)+I(4)+I(5)+I(6) ring breathing
S(26)=I(1)+I(2)–2×I(3)+I(4)+I(5)–2×I(6) ring deformation
S(27)=I(1)+I(2)–I(4)–I(5) ring deformation
S(28)=I(21)+I(22)+I(23)+I(24)+I(25)+I(26) ring symmetric puckering
S(29)=I(21)–I(22)+I(23)–I(24)+I(25)–I(26) ring antisymmetric deformation
S(30)=2×I(21)–I(22)–I(23)+2×I(24)–I(25)–I(26) ring symmetric deformation
S(31)=2×I(21)+I(22)–I(23)–2×I(24)–I(25)+I(26) ring antisymmetric puckering

Species A” in trans or A in gauche conformers
S(32)=I(35)–I(36) α-CH out-of-plane bend
S(33)=I(9)–I(10)–I(17)+I(18) β-CH2 antisymmetric stretch
S(34)=I(9)+I(10)–I(17)–I(18) β-CH2 symmetric stretch
S(35)=I(11)–I(12)–I(15)+I(16) γ-CH2 antisymmetric stretch
S(36)=I(11)+I(12)–I(15)–I(16) γ-CH2 symmetric stretch
S(37)=4×I(27)–I(37)–I(38)–I(39)–I(40)–4×I(32) β-CH2 deformation

+I(53)+I(54)+I(55)+I(56)
S(38)=I(37)–I(38)+I(39)–I(40)–I(53)+I(54)–I(55)+I(56) β-CH2 wag
S(39)=I(37)–I(38)–I(39)+I(40)–I(53)+I(54)+I(55)–I(56) β-CH2 twist
S(40)=I(37)+I(38)–I(39)–I(40)–I(53)–I(54)+I(55)+I(56) β-CH2 rock
S(41)=4×I(28)–I(41)–I(42)–I(43)–I(44)–4×I(31)+I(49) γ-CH2 deformation

+I(50)+I(51)+I(52)
S(42)=I(41)–I(42)+I(43)–I(44)+I(49)–I(50)+I(51)–I(52) γ-CH2 wag
S(43)=I(41)–I(42)–I(43)+I(44)+I(49)–I(50)–I(51)+I(52) γ-CH2 twist
S(44)=I(41)+I(42)–I(43)–I(44)–I(49)–I(50)+I(51)+I(52) γ-CH2 rock
S(45)=I(45)–I(46)+I(47)–I(48) δ-CH2 deformation
S(46)=I(45)–I(46)–I(47)+I(48) δ-CH2 twist
S(47)=I(1)–I(2)+I(3)–I(4)+I(5)–I(6) ring deformation
S(48)=I(1)–I(2)+I(4)–I(5) ring deformation
S(49)=I(1)–I(2)–2×I(3)–I(4)+I(5)+2×I(6) ring deformation
S(50)=I(22)–I(23)+I(25)–I(26) ring antisymmetric deformation
S(51)=I(22)+I(23)–I(25)–I(26) ring twisting
S(52)=I(60) C–Hald out-of-plane bend (wag)
S(53)=I(33)–I(34) ring-CHO out-of-plane bend
S(54)=I(61) CHO antisymmetric torsion (=ϕ)

the polarized and strong line at 1020 cm–1 in the Raman
spectra of both the gas and the liquid. [3] This mode ap-
pears with a PED of 84% S(47) at 1090 cm–1 in the trans
form and with a higher degree of mixing between sym-
metry coordinates with 58% S(47) at 1091 cm–1 in the
gauche Raman spectrum. In case of the CHO bending,

there are actually two modes of different symmetries in
the trans conformer. The CH in-plane bend is of A’ sym-
metry and appears with 80% S(22) at 1419 cm–1 in 
the gauche conformer and at 1413 cm–1 with 82% in 
the trans form of the molecule. In the infrared spectrum
of cyclobutanecarboxaldehyde it was observed at
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Table 6 Numbers i of vibrations in order of increasing wavenum-
bers, symmetry species Sp, wavenumbers k (k=1/λ, in cm–1, DFT
results), infrared intensities I (in K m mol–1, equivalent to
6.161×10–22 W m–2 Hz–1, where 1 mol corresponds to 22.41 dm3

at Standard Temperature and Pressure, while 1 K corresponds to
1.381×10–23 J, DFT results), Raman activities S (in Å4 amu–1), de-
polarization ratios ρ (both S and ρ values are from DFT), and the
contributions of the different symmetry coordinates S(l) to the Po-

tential Energy Distribution (PED) for each normal mode (only
contributions larger than or equal to 10% are listed, DFT results)
for the three stable conformers of cyclohexane carboxaldehyde 
(6-311++G** basis set in all calculations, B3LYP functional in all
DFT calculations). The total energies, Etot, include the zero-point
energies (in brackets the percentage in the mixture of conformers
at 300 K is given)

i Sp k I S ρ PED

equatorial-gauche (63.3%) Etot =–349.117602 H
1 A 71 5.85 1.06 0.75 68% S(54) 16% S(24)
2 A 143 2.51 0.61 0.73 56% S(31) 14% S(54) 12% S(24)
3 A 215 3.56 0.46 0.67 35% S(51) 31% S(53) 11% S(49) 11% S(23)
4 A 232 3.29 0.24 0.58 51% S(51) 22% S(53)
5 A 316 0.32 0.57 0.73 39% S(28) 20% S(24) 20% S(31)
6 A 356 0.28 3.53 0.23 36% S(30) 14% S(1) 10% S(24) 10% S(28)
7 A 412 1.27 0.89 0.11 36% S(30) 29% S(28) 10% S(24)
8 A 438 0.23 0.91 0.75 80% S(50)
9 A 506 0.57 0.57 0.13 40% S(29) 14% S(19) 11% S(21) 10% S(15)

10 A 677 17.35 3.02 0.50 43% S(23) 10% S(24) 10% S(49)
11 A 760 3.73 18.89 0.09 47% S(25) 10% S(19)
12 A 795 0.17 0.81 0.75 41% S(40) 38% S(44) 12% S(48)
13 A 839 0.41 4.87 0.07 51% S(27) 24% S(25)
14 A 849 1.64 1.33 0.55 41% S(21) 25% S(15)
15 A 900 4.07 0.57 0.73 39% S(49) 15% S(44) 12% S(40)
16 A 924 5.48 0.10 0.33 26% S(44) 23% S(40) 14% S(49)
17 A 945 10.49 1.96 0.68 17% S(1) 15% S(27) 10% S(52)
18 A 970 7.85 2.99 0.68 25% S(52) 21% S(19)
19 A 1035 0.23 11.98 0.74 64% S(26) 12% S(17) 10% S(13)
20 A 1057 1.45 5.76 0.74 25% S(48) 19% S(29)
21 A 1074 2.97 1.13 0.65 19% S(43) 19% S(39) 13% S(32)
22 A 1091 0.07 0.79 0.55 58% S(47) 12% S(42)
23 A 1113 4.36 1.68 0.69 24% S(47) 19% S(39)
24 A 1164 2.69 3.73 0.15 29% S(15) 19% S(19) 15% S(21) 10% S(28)
25 A 1210 3.43 3.67 0.75 28% S(43) 17% S(38) 13% S(48)
26 A 1258 1.56 4.84 0.69 30% S(18) 24% S(11) 13% S(13)
27 A 1282 0.33 2.02 0.75 35% S(46) 19% S(32) 10% S(39)
28 A 1293 1.38 10.74 0.75 67% S(14)
29 A 1312 2.48 8.35 0.75 25% S(18) 18% S(39) 16% S(11) 15% S(32)
30 A 1327 4.95 1.79 0.54 18% S(18) 18% S(38) 15% S(11) 12% S(32)
31 A 1356 0.78 2.57 0.67 38% S(38) 11% S(32) 10% S(42)
32 A 1366 0.05 0.75 0.68 52% S(42) 16% S(46)
33 A 1377 0.23 0.44 0.68 56% S(45) 12% S(43)
34 A 1379 0.54 1.73 0.75 66% S(17) 12% S(14)
35 A 1389 5.49 3.43 0.28 54% S(13)
36 A 1419 3.23 3.52 0.65 80% S(22)
37 A 1484 0.54 15.91 0.75 70% S(37) 25% S(41)
38 A 1486 5.00 10.02 0.75 69% S(20) 22% S(12)
39 A 1488 5.31 0.31 0.72 71% S(41) 27% S(37)
40 A 1493 14.59 0.03 0.05 61% S(16) 34% S(12)
41 A 1505 1.09 0.67 0.70 40% S(12) 34% S(16) 24% S(20)
42 A 1795 211.66 16.42 0.50 91% S(10)
43 A 2849 136.02 108.74 0.41 99% S(9)
44 A 2951 18.18 82.25 0.17 97% S(2)
45 A 2997 18.57 85.29 0.22 27% S(6) 24% S(36) 15% S(8) 13% S(5)
46 A 3000 17.29 153.95 0.22 43% S(36) 12% S(8) 11% S(35)
47 A 3006 11.42 78.40 0.24 29% S(34) 25% S(4) 23% S(8)
48 A 3008 41.66 49.32 0.26 31% S(6) 31% S(8) 19% S(34) 10% S(4)
49 A 3025 16.51 66.36 0.24 48% S(4) 29% S(34)
50 A 3046 52.38 70.56 0.60 37% S(3) 37% S(33)
51 A 3051 56.59 107.08 0.32 39% S(35) 31% S(7)
52 A 3052 37.56 215.18 0.18 36% S(35) 19% S(7) 10% S(5) 10% S(6)
53 A 3057 78.77 107.85 0.22 58% S(5) 24% S(7)
54 A 3075 34.23 80.57 0.34 45% S(3) 38% S(33)

equatorial-trans (24.3%) Etot=–349.117352 H
1 A” 60 7.20 1.70 0.75 82% S(54) 11% S(53)
2 A’ 111 2.54 0.12 0.75 58% S(31) 23% S(24) 10% S(28)
3 A” 220 0.01 0.00 0.75 91% S(51)
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4 A” 291 1.18 1.74 0.75 70% S(53) 14% S(54)
5 A’ 293 2.58 0.86 0.45 35% S(31) 20% S(28) 13% S(24) 10% S(23)
6 A’ 354 0.06 2.16 0.38 50% S(30) 12% S(1) 10% S(28)
7 A’ 403 4.12 1.92 0.01 46% S(28) 22% S(24)
8 A” 444 0.18 1.11 0.75 79% S(50)
9 A’ 513 0.43 3.04 0.07 24% S(29) 18% S(30) 10% S(19)

10 A’ 566 14.35 1.25 0.28 40% S(23) 19% S(29)
11 A” 792 0.00 0.85 0.75 40% S(44) 39% S(40) 14% S(48)
12 A’ 801 0.79 17.09 0.07 49% S(25) 16% S(15)
13 A’ 844 0.66 2.61 0.11 36% S(27) 25% S(21) 18% S(25)
14 A” 870 0.90 0.52 0.75 68% S(49) 12% S(52)
15 A’ 899 0.90 1.36 0.19 44% S(27) 19% S(21)
16 A” 924 2.73 0.22 0.75 37% S(44) 34% S(40)
17 A’ 962 25.25 0.68 0.37 32% S(19) 16% S(1) 13% S(29) 11% S(15)
18 A” 985 1.48 5.53 0.75 35% S(52) 34% S(48)
19 A’ 1037 0.82 11.49 0.75 66% S(26) 11% S(17)
20 A” 1073 0.13 3.43 0.75 22% S(43) 19% S(48) 15% S(52) 10% S(32)
21 A” 1090 0.00 0.35 0.75 84% S(47)
22 A’ 1093 23.11 1.80 0.75 34% S(1) 27% S(29) 15% S(15)
23 A” 1100 0.01 3.18 0.75 33% S(39) 17% S(46) 16% S(42) 12% S(52)
24 A’ 1174 6.98 5.35 0.12 22% S(15) 20% S(19) 10% S(24) 10% S(21)
25 A” 1201 0.18 3.19 0.75 31% S(43) 16% S(38) 10% S(48)
26 A’ 1252 4.25 3.91 0.68 39% S(11) 20% S(18) 12% S(13)
27 A” 1289 1.24 2.47 0.75 39% S(46) 19% S(39) 12% S(32)
28 A’ 1293 1.73 13.17 0.74 67% S(14)
29 A’ 1312 0.04 2.23 0.59 50% S(18) 30% S(11)
30 A” 1336 0.01 5.38 0.75 39% S(38) 24% S(32) 12% S(43) 11% S(39)
31 A” 1362 0.03 2.50 0.75 34% S(42) 21% S(32) 13% S(45) 10% S(38)
32 A” 1367 0.01 0.72 0.75 25% S(42) 16% S(38) 15% S(39) 15% S(32)
33 A’ 1378 0.60 0.47 0.62 41% S(17) 23% S(13)
34 A” 1379 0.02 2.16 0.75 54% S(45) 11% S(43)
35 A’ 1389 2.24 1.90 0.69 48% S(13) 30% S(17)
36 A’ 1413 1.71 4.11 0.38 82% S(22)
37 A” 1483 0.09 16.69 0.75 65% S(37) 31% S(41)
38 A’ 1486 4.86 10.85 0.75 60% S(20) 35% S(12)
39 A” 1487 5.62 0.08 0.75 66% S(41) 32% S(37)
40 A’ 1493 13.75 0.06 0.10 66% S(16) 25% S(12)
41 A’ 1505 1.30 0.71 0.73 37% S(12) 31% S(20) 30% S(16)
42 A’ 1794 267.96 23.39 0.44 91% S(10)
43 A’ 2845 97.12 70.67 0.31 99% S(9)
44 A” 2997 17.15 7.90 0.75 70% S(34) 18% S(33)
45 A’ 3001 20.96 14.03 0.68 63% S(4) 15% S(8) 14% S(3)
46 A’ 3001 12.51 332.75 0.15 41% S(8) 16% S(7) 14% S(6) 13% S(5)
47 A” 3009 7.93 30.76 0.75 80% S(36) 11% S(34)
48 A’ 3011 48.09 68.74 0.25 67% S(6) 23% S(8)
49 A’ 3038 8.10 57.51 0.74 73% S(2) 14% S(3) 10% S(4)
50 A” 3052 85.78 4.47 0.75 60% S(35) 15% S(33) 13% S(36)
51 A’ 3052 58.22 148.70 0.25 56% S(7) 18% S(8) 11% S(5) 10% S(6)
52 A” 3055 5.55 124.63 0.75 65% S(33) 25% S(35)
53 A’ 3055 6.58 240.92 0.15 47% S(5) 20% S(3) 10% S(7)
54 A’ 3062 103.84 48.90 0.00 42% S(3) 24% S(5) 16% S(2) 13% S(7)

axial-gauche (12.4%) Etot=–349.116050 H
1 A 80 6.00 1.49 0.75 69% S(54) 10% S(24) 10% S(31)
2 A 143 1.97 0.87 0.64 48% S(31) 11% S(24)
3 A 183 2.90 0.50 0.75 52% S(51) 19% S(53) 12% S(54)
4 A 272 2.03 0.76 0.19 27% S(31) 25% S(24)
5 A 318 4.25 0.61 0.51 34% S(53) 22% S(51) 10% S(23) 10% S(28)
6 A 376 0.15 0.47 0.70 58% S(28) 14% S(30)
7 A 424 1.28 1.00 0.74 74% S(50)
8 A 465 1.08 0.47 0.69 46% S(30) 13% S(29)
9 A 563 0.71 1.89 0.30 21% S(29) 16% S(23) 11% S(19)

10 A 663 1.63 3.56 0.10 16% S(24) 14% S(23) 12% S(1)
11 A 754 11.48 17.30 0.05 45% S(25) 13% S(27) 12% S(23)
12 A 792 0.12 1.27 0.65 41% S(44) 38% S(40) 13% S(48)
13 A 829 5.31 7.84 0.17 36% S(27) 34% S(25)
14 A 846 4.12 1.87 0.46 41% S(21) 25% S(15)

Table 6 (continued)

i Sp k I S ρ PED
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1385 cm–1. The CH out-of-plane bend is of A” symmetry
in the trans conformer and appears highly mixed with
other coordinates at 985 cm–1 with 35% S(52) in the
trans form, and at 970 cm–1 with only 25% S(52) in eg.
However, in both cases S(52) is the leading contribution
to the corresponding fundamentals. It was not clearly as-
signed in the case of cyclobutanecarboxaldehyde. The
in-plane CCO vibration was assigned to the Raman line
observed at 577 cm–1 in the spectrum of liquid cyclobu-
tanecarboxaldehyde. [3] This line shows up at different
wavenumbers in the two conformers, because of the dif-
ferent type of mixing of symmetry coordinates in both of
them. In eg it appears with 43% S(23) at 677 cm–1, while
in et there are 40% S(23) at 566 cm–1. It must be noted
that in et symmetry coordinates of A’ do not mix with
those of A” symmetry, while in eg they are all of A sym-
metry and thus can and actually, as in this case, do mix.
The two ring-CO modes were assigned to lines observed
at 335 cm–1 (polarized) and at 256 cm–1 (depolarized) in
the Raman spectrum of liquid cyclobutanecarboxalde-
hyde. [3] The ring-CHO out-of-plane bend can be as-

signed to the line at 291 cm–1 [70% S(53)] in the et con-
former, while due to strong mixing with other coordi-
nates in the corresponding fundamentals it contributes to
the lines at 215 cm–1 [31% S(53)] and 232 cm–1 [22%
S(53)] in eg. The ring-CHO bend contributes to three
modes in et and to four modes in eg. These are the fun-
damentals at 111 cm–1 [23% S(24)], 293 cm–1 [13%
S(24)], and at 403 cm–1 [22% S(24)] in et, and at
71 cm–1 [16% S(24)], at 143 cm–1 [12% S(24)], at
316 cm–1 [20% S(24)], and at 412 cm–1 [10% S(24)] in
eg. Thus a clear assignment of this motion to a single
fundamental is not quite possible. The lowest fundamen-
tal in both conformers is dominated by the antisymmetric
torsion of the CHO group [71 cm–1 with 68% S(54) in
eg, 60 cm–1 with 82% S(54) in et]. The lowest skeletal
modes should be due to the motion of the heavy atoms in
the ring and, thus, should be the ring puckering [S(28),
S(31)] and the ring twist [S(51)]. These motions contrib-
ute, with one exception, again to many fundamentals and
thus it is once more impossible to assign a specific mode
to these motions. Only in the et conformer can the ring

15 A 874 2.44 0.54 0.75 71% S(49)
16 A 919 19.69 3.31 0.72 26% S(27) 21% S(1)
17 A 944 3.01 1.60 0.64 34% S(44) 30% S(40)
18 A 982 5.92 6.16 0.43 28% S(52) 13% S(1) 11% S(19)
19 A 1034 2.38 9.40 0.74 32% S(26) 23% S(29) 13% S(19)
20 A 1047 2.19 6.49 0.74 38% S(48) 11% S(32)
21 A 1054 0.40 1.39 0.74 23% S(26) 15% S(29)
22 A 1097 0.51 0.03 0.75 55% S(47) 16% S(39)
23 A 1131 0.22 0.35 0.74 18% S(32) 16% S(43) 16% S(42) 14% S(38) 12% S(39)
24 A 1146 0.25 1.85 0.37 20% S(15) 15% S(19) 13% S(52) 10% S(21)
25 A 1173 3.79 2.00 0.73 23% S(43) 18% S(47) 14% S(39)
26 A 1250 2.33 0.97 0.31 25% S(11) 19% S(14) 14% S(18) 10% S(19)
27 A 1283 0.38 11.23 0.75 33% S(46) 22% S(32) 11% S(48)
28 A 1297 0.62 15.14 0.75 55% S(18) 14% S(14)
29 A 1311 4.11 3.09 0.72 34% S(39) 15% S(32) 12% S(46)
30 A 1347 3.41 0.37 0.75 19% S(17) 17% S(11) 11% S(14)
31 A 1356 0.49 0.67 0.59 41% S(38) 20% S(42)
32 A 1374 0.05 0.17 0.28 40% S(42) 16% S(46) 11% S(43)
33 A 1379 0.94 0.62 0.71 40% S(45) 21% S(13)
34 A 1385 0.69 0.53 0.73 45% S(13) 15% S(45) 10% S(38)
35 A 1391 1.76 0.20 0.68 52% S(17) 26% S(14)
36 A 1416 2.03 4.35 0.46 80% S(22)
37 A 1481 4.61 14.03 0.75 73% S(37) 14% S(12)
38 A 1487 2.58 10.54 0.75 51% S(20) 25% S(12) 17% S(37)
39 A 1491 8.17 1.83 0.75 73% S(41) 13% S(16)
40 A 1497 12.47 0.84 0.75 36% S(12) 20% S(16) 19% S(20) 16% S(41)
41 A 1508 2.18 1.14 0.72 65% S(16) 15% S(12) 15% S(20)
42 A 1796 181.08 12.59 0.50 91% S(10)
43 A 2845 128.56 102.59 0.37 99% S(9)
44 A 2964 25.50 74.01 0.44 97% S(2)
45 A 2995 14.76 127.53 0.24 53% S(8) 19% S(7)
46 A 3003 30.91 22.50 0.67 33% S(36) 29% S(6) 24% S(8)
47 A 3013 26.36 39.24 0.62 84% S(34)
48 A 3018 41.23 171.55 0.09 79% S(4)
49 A 3026 17.95 152.94 0.22 47% S(36) 43% S(6)
50 A 3045 44.20 63.81 0.70 31% S(3) 28% S(33) 14% S(35)
51 A 3051 54.15 240.54 0.11 56% S(7) 19% S(8) 13% S(6)
52 A 3055 44.83 97.80 0.46 49% S(35) 16% S(33) 16% S(3)
53 A 3065 65.55 47.76 0.51 58% S(5) 22% S(35)
54 A 3079 24.25 89.64 0.30 39% S(3) 37% S(33)

Table 6 (continued)

i Sp k I S ρ PED
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twist be assigned to the line at 220 cm–1 [91% S(51)]. In
the gauche conformer this motion is the dominant partic-
ipant in the two modes at 215 cm–1 and 232 cm–1 [35%
S(51) and 51% S(51)] to which also the ring-CHO out-
of-plane bend [S(53)] contributes strongly.

Thus, it is obvious that in such a large molecule quite
a few symmetry coordinates must be used to describe
some of the normal modes and in most cases it is not
possible to assign just one mode to one symmetry coor-
dinate. However, the PED values in Table 6 give insight
into the degree of mixing of symmetry coordinates in the
different modes and thus into the nuclear motions be-
longing to each vibration. As next step we have to calcu-
late and plot the spectra from the data obtained and com-
pare the result to the experimental spectrum.

Vibrational infrared and Raman spectra

For the infrared spectrum we used the intensities Ij as giv-
en by the DFT calculations (all relative to the largest one
in the conformers present in the mixture at 300 K) and
converted them to relative transmittances. In the case of
the Raman spectra, we used the scattering activities Sj,
the wavenumbers kj, and the depolarization ratios ρj for
each normal mode j as calculated in the DFT runs for the
conformers. Then the Raman cross sections which are
proportional to the intensities are given as [15, 23]

(1)

Since we are interested only in relative intensities, we
calculated them as

(2)

where jm denotes that line among all the lines from all
conformers present in the mixture that has the largest
Raman cross section. As laser wavelength we used that
of an argon ion laser at λo=514.5 nm (ko=1/λo). As tem-
perature we used T=300 K. Then the line shapes are cal-
culated as Lorentzians (L) with a width of ∆ν=15 cm–1

corresponding to the estimated average width in the ex-
perimental spectrum used for comparison. Thus the final
spectrum for one conformer is calculated as

(3)

where the index j runs over all normal modes. For the
plots a step size for the grid of generally 10 cm–1 was
used. However, when a line appears between two con-
secutive grid points, 12 extra points with a step size of
0.5 cm–1 are inserted into this interval, which includes
the exact center of the line.

After calculation of the spectra of all conformers,
they are superimposed with the help of the Boltzmann
distribution. Then the total intensity as function of wave-
number for a mixture of N+1 different conformers is giv-
en by

(4)

Here Il(k) are the individual spectra of the conformers,
l=0 corresponds to the most stable conformer, ∆E=El–E0
is the energy of each conformer relative to the most sta-
ble one, El is the absolute total energy of conformer l and
gl is the degeneracy of conformer l (in our case 2 for
gauche conformers and 1 for et). 

In Figs. 3 and 4 we show the calculated Raman and
infrared spectra, respectively. The insets are in each case
magnified plots of the underlying low relative intensity
and transmittance parts of the corresponding spectra. A
detailed inspection of the spectra and comparison with

Fig. 3 Calculated vibrational Raman spectrum of a mixture con-
taining 63.3% eg, 24.3% et and 12.4% ag conformer (line width is
15 cm–1)

Fig. 4 Calculated vibrational infrared spectrum of a mixture con-
taining 63.3% eg, 24.3% et and 12.4% ag conformer (line width is
15 cm–1)
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Table 6 reveals that there are no lines whose presence or
absence in an experimental spectrum could help to reach
a conclusion whether or not the ag conformer is present
in a mixture of conformers. Also, the overall appearance
of the spectrum has no distinctive features that would tell
us about the abundances of the conformers. This is more
clearly seen in Fig. 5 where we plot the theoretical infra-
red spectrum in comparison to a replot of an experimen-
tal one from the Aldrich library. [24] We have measured
the peak line intensities in that spectrum together with
the wavenumbers and replotted it with a common line
width of 15 cm–1 in the same way as the theoretical ones.
When assuming a common average line width, relative
peak intensities are proportional to relative integrated in-
tensities (Equation 3). It is clear that in the region below
1600 cm–1 the overall agreement between the two spec-
tra is rather good and no conclusion can be drawn wheth-
er ag is present or not in the experimental spectrum.
However, it is clear from the previous discussion that,
due to the problems with total energy differences in our
calculations, this is a crucial open question, because the
spectra depend via the abundances on total energy differ-
ences, while the spectra of the individual conformers do
not. 

Therefore, we concentrate on a small region of the
spectra, roughly between 900 cm–1 and 1000 cm–1,
where a distinctive feature can be seen in Fig. 5. 
Figure 6 shows plots of this region with line widths of

1 cm–1. We see that here the theoretical spectrum con-
tains five lines corresponding to the four lines in the
experimental spectrum. The theoretical line at 900 cm–1

belongs to a line below that wavenumber in the experi-
mental spectrum. To explain the large intensity of the
experimental line at roughly 957 cm–1 we have to as-
sume that the two lines, one from eg and one from et, in
the theoretical spectrum are seen as one line in the ex-
perimental one. Further, we have to assume that the ag
wavenumber in the theoretical spectrum is somewhat
underestimated. In contrast to HF or MP2, which al-
most always overestimate wavenumbers, DFT is known
to both over- and underestimate terms, depending on
the line under consideration. [12] Since the functional
form of the theoretical spectrum is known analytically
together with the intensities of each line in each con-
former, this can be used to determine an estimate as to
how much intensity at a peak wavenumber actually is
due to the line peak there itself and how much is con-
tributed from neighboring lines. Assigning in this way
the relative intensity of the strongest experimental line
to 1, we get a sequence of effective relative intensities
in the experimental spectrum of 1.00, 0.64, 0.24, and
0.49 with decreasing wavenumber. Two of these lines
are assigned to only one conformer, and the strongest
one to eg+et. Thus we can estimate by forming ratios 
of intensities and using the theoretical intensities from
Table 6 the abundances which would correspond to the

Fig. 5 Calculated vibrational infrared spectrum of a mixture con-
taining 63.3% eg, 24.3% et and 12.4% ag conformer in compari-
son to a replotted experimental one (line width is 15 cm–1)

Fig. 6 Calculated vibrational infrared spectrum of a mixture con-
taining 63.3% eg, 24.3% et and 12.4% ag conformer in compari-
son to a replotted experimental one between about 900 cm–1 and
about 1000 cm–1, with a line width of 1 cm–1
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experimental lines, provided that our assignment (not
sure) and the theoretical intensities (qualitatively cor-
rect) are correct:

Thus in Fig. 7 we show the same type of plot as in
Fig. 6, but now the abundances on which the theoretical
spectrum is based are the experimental ones. [10] As-
suming that the wavenumber of the most intense theoret-
ical line is underestimated by roughly 10 cm–1, we obtain
a nearly one to one correspondence between theoretical
and experimental spectra. Therefore, we conclude that
the experimental abundances of conformers are the cor-
rect ones (it could have been possible that a 12% ag con-
tribution might have been overlooked in the microwave
spectrum). Thus Fig. 8 shows again the comparison of
the complete spectra, the theoretical one now calculated
with a mixture of 87% eg and 13% et. Figures 9 and 10
show the Raman and infrared spectra in total for these
abundances. The overall agreement in the lower wave-
number part is of roughly the same quality as in Fig. 5,
but with some details improved. There are two problems
at the extreme ends of the spectrum. The relative intensi-
ty of the lowest wavenumber line seems to be far too
high in the theoretical spectrum. However, for the corre-
sponding experimental line, it was difficult to obtain the
intensity, because this line is a rather broad feature, su-
perimposed on a very high background noise. Thus, we
might have severely underestimated its intensity from
the experimental spectrum. 

The other problem lies at the opposite end of the
spectra. The intensities of the CH stretches and of the
CO stretch are strongly overestimated, also relative to

Fig. 7 Calculated vibrational infrared spectrum of a mixture con-
taining 87% eg and 13% et conformer in comparison to a replotted
experimental one between about 900 cm- and about 1000 cm–1,
with a line width of 1 cm–1

Fig. 8 Calculated vibrational infrared spectrum of a mixture con-
taining 87% eg and 13% et conformer in comparison to a replotted
experimental one (line width is 15 cm–1)

(5)

Obviously the first two intensity ratios give abundance
ratios in excellent agreement with the ratios from our
DFT calculations. Unfortunately, as the last example
shows, other ratios yield results completely inconsistent
with DFT data. Note that other assignments of the lines
we tried yield results that are even more inconsistent
with respect to each other and with respect to the DFT
results, some even giving negative abundances.

Thus we reach the same conclusion as before: While
results based on total energy derivatives such as geome-
tries, wavenumbers, and intensities derived from the
DFT data can be trusted, total energy differences cannot.
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each other, while the wavenumbers are more in error in
DFT than for the lines below 1600 cm–1. In the case of
the CH stretches, the reasons are utterly clear and text-
book knowledge: theoretical CH stretches suffer notori-
ously from anharmonicities in the experimental potential
curves. Since in anharmonic potentials other wavefunc-
tions have to be used, intensities calculated in the har-
monic approximation as done here can also be quite
wrong for these vibrations. Figure 11a shows a potential
scan of the C–Hald stretch as an example, starting from
the eg minimum geometry. The dashed line is plotted
from a parabola, centered at the equilibrium bond length
and with the force constant given by the DFT calculation
for this mode, which is composed to 99% from the
C–Hald stretch. The anharmonic contributions to the
scanned potential function (single point DFT calculation
at different bond lengths) as compared to the harmonic
parabola are clearly visible, even around the minimum.
Figure 11b shows the potentials for the CO stretch.
Clearly, in this case the deviations from a harmonic po-
tential are even larger than in the well-known CH case.
Thus the CO stretch suffers from the same troubles as
the CH stretches, a trouble which cannot be removed by
simply increasing basis set sizes, quality of DFT func-
tionals (as most functionals B3LYP suffers from an arti-
ficial electron self-interaction contribution), or correla-
tion levels. 

Conclusion

In conclusion, our DFT calculations have provided us,
apart from deficiencies in absolute values of total ener-
gies due to basis set problems, with rather reliable infor-
mation about the geometries of the stable conformers of
cyclohexanecarboxaldehyde. The basis set problems are
difficult to avoid when large atomic basis sets are used in

Fig. 9 Calculated vibrational Raman spectrum of a mixture con-
taining 87% eg and 13% et conformer (line width is 15 cm–1)

Fig. 10 Calculated vibrational infrared spectrum of a mixture con-
taining 87% eg and 13% et conformer (line width is 15 cm–1)

Fig. 11a,b Potentials V relative
to their minimal values as func-
tions of the respective bond
lengths as obtained from a DFT
potential scan (solid line) and
from a parabola centered at the
equilibrium bond length,
V(r)=(1/2)f(r–ro)2 (dashed
line), having a force constant
f as given in the Gaussian out-
put for the respective modes
(eg conformer as equilibrium)
for a C–Hald bond stretch and
b C=O bond stretch



molecules containing a comparatively large number of
atoms. Smaller atomic basis sets, on the other hand,
could render other properties than total energies unreli-
able. According to our comparisons to experiment, all
properties based on derivatives of the total energy are
obtained in fair agreement with experimental data, even
shapes of spectra. In the latter case one should keep in
mind that only the lower wavenumber parts of the spec-
tra are represented well, while CH and CO stretches suf-
fer from anharmonicities. The relative stability of con-
formers does not agree with experiment, because they
are based on differences of numbers of the order
Gcal mol–1, resulting in numbers of the order of
kcal mol–1. Thus the basis set problems play a role here.
They do not in the calculation of derivatives, which can
be done analytically not as differences of large numbers
(containing relatively small errors). The vibrational as-
signments of normal modes of large molecules like ours
are not always straightforward, because in many cases
several symmetry coordinates can participate in one nor-
mal mode. However, explicitly given PED values give
insight into the degree of mixing of different atomic
movements in a normal mode. The Cartesian coordinates
of the three stable conformers are available as Supple-
mentary Material to this article.
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Appendix

To start our PED calculations, we read from the Gaussi-
an98 output the normal mode wavenumbers kk in cm–1

and the coefficients Nx in Cartesian coordinates. Because
we have to take some precautions due to the fact that
these coefficients are given only to an accuracy of two
digits after the decimal point, we outline our procedures
here in some detail, although they are based on the con-
siderations given in Wilson’s book. [14] First of all, to
arrive at a consistent system of units with masses in amu,
lengths in Å, and force constants in mdyne Å–1, we cal-
culate

(A1)

where fk is the force constant, mk
* the effective mass and

kk the wavenumber in cm–1 of normal mode k. Note that
singly underlined quantities are column vectors, while
doubly underlined ones are matrices. The vector of nor-
mal coordinates is then

(A2)

where the dagger denotes (for our real matrices here) the
transpose of a matrix. x is a vector containing the 3N (N

is the number of atoms) Cartesian displacements (3 for
each atom) from equilibrium. Nx is thus a 3N×(3N–6)
matrix, because translations and rotations are not includ-
ed so far. Therefore:

(A3)

As a next step because of the inaccuracies of the normal
mode coefficients we normalize and orthogonalize them
with respect to an “overlap” matrix M, containing the
atomic masses on its diagonal and 0 otherwise. Each
mass has to appear three times in sequence because of
the three Cartesian displacements for each atom. This or-
thonormalization corresponds to the fact that the mass-
weighted Cartesian normal mode coefficients Nq have to
be orthonormal with metric 1:

(A4)

The force constant matrix Fq in mass weighted Cartesian
coordinates can be derived from the fact that the poten-
tial energy V does not depend on the coordinate system:

Thus from our input data we can construct Fq:

(A6)

In all further calculations we do not use the normal mode
coefficients read in, but those obtained by diagonalizat-
ion of the so formed Fq. This yields the same eigenval-
ues εk, but somewhat more accurate coefficients Nq. Note
that this matrix now contains also rotations and transla-
tions and is therefore a square matrix of dimension
3N×3N.

To obtain a PED, we now have to transform force
constant matrices and normal mode coefficients first in-
to a space of internal coordinates and then into one of
symmetry coordinates. The latter define the atomic mo-
tions that one would like to assign the normal modes to,
while the former ones are introduced just to make it
easier to define the latter. For a complete description of
all possible internal motions one needs at least a com-
plete set of independent internal coordinates (3N–6).
Anyone of them can be built from the 5 primitive ones:
bond stretch, bond angle bend, wag, torsion, and libra-
tion. The latter are only needed if parts of the molecule
are linear (at least 3 collinear atoms). The program in-
put just defines what type of internal coordinate is de-
sired together with the numbers of the atoms involved.
Then following [14] and using the equilibrium geome-
try of the molecule which is also part of the input, the
program calculates the matrix B which links the inter-
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(A5)



(A13)

If after removal of an internal coordinate for each zero
eigenvalue of BB+, there are 3N–6 independent coordi-
nates left, the program goes on with the calculation. If
the set is not complete, it indicates the fact in the output
and stops execution. Redundants must be removed be-
cause BB+ cannot be inverted if it has zero eigenvalues.

However, now the deleted dependent coordinates
have to be removed from U also. Assume an internal co-
ordinate ko has to be removed. Then from the above dis-
cussion we have the equation

(A14)

Let us call the matrix still containing the redundant
internal coordinate U’, and the new one obtained after
removal U:

(A15)

In the last line of equation (A15) we just have insert-
ed equation (A14). From this we get our new symmetry
coordinate matrix as:

(A16)

As next step the program orthogonalizes the old internal
coordinates (let us call the old matrix B’ from now on,
and the new one B) to the translations and rotations con-
tained in Nq as obtained from diagonalization of Fq. This
is again necessary because of the low accuracy of the Nx
input. Let us call the 6×3N matrix, which links the trans-
lations and rotations to the Cartesian displacements, T.
Then our new B matrix has to fulfill

(A17)

where index j runs from 1 to 6. This is reached by adding
a linear combination of the translations and rotations
with yet unknown coefficients α to the old matrix B’:

(A18)
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nal coordinate vector b to the Cartesian displacement
vector x:

(7)

The user is free to introduce an overcomplete set of in-
ternal coordinates, since this usually makes the construc-
tion of the necessary symmetry coordinates easier. The
complete set of independent internal coordinates would
give a B of dimension (3N–6)×3N, a rectangular matrix,
which has no normal inverse.

The next step in the input has to provide at least 3N–6
coefficients which link the desired symmetry coordinate
vector s to the internal coordinate vector b. The coeffi-
cient matrix has to contain only orthogonal symmetry
coordinates:

(A8)

At this point there are two possibilities for the user.
One can provide either a complete set of 3N–6 symme-
try coordinates together with six orthogonal redundant
coordinates, or the user can provide only the 3N–6 nec-
essary orthogonal symmetry coordinates. The program
detects which case is present and deals with it accord-
ingly.

However, now as next step redundant internal coordi-
nates must be identified and removed from the list of in-
ternal coordinates, as well as from matrix U which links
symmetry and internal coordinates. This can be done by
forming a square symmetric matrix BB+. We use for in-
versions the fact that, for symmetric square matrices A,
their inverse can be constructed from their eigenvalue λ
(contains the eigenvalues on the diagonal and 0 else) and
eigenvector matrices V:

(A9)

We first diagonalize BB+:

(A10)

Then we have a redundant internal coordinate for
each zero eigenvalue of this matrix. The eigenvalues we
can get by

(A11)

Therefore an eigenvalue of zero with index say jo means:

The existence of a relation like the latter between inter-
nal coordinates just proves linear dependence. To choose
an internal coordinate with index ko to be removed from
the matrix B, the program chooses ko such that 

(A12)



Thus we arrive at

(A27)

Therefore the potential energy in the normal mode j, εj,
is

(A28)

And finally the contribution of the symmetry coordinate
k to the potential energy of normal mode j, εj, in percent,
PEDkj, is given by

(A29)

It is easy to see that the sum over all symmetry coordi-
nates k yields 100% as required. However, due to the
presence of negative coupling constants in Fs and Fb,
small negative percentages can occur due to the inaccu-
racies in the Nx input. Further, if two coordinates are
very strongly coupled, i.e. nearly linear dependent, even
percentages larger than 100% for one of them compen-
sated by percentages less than –100% for the other can
occur. In such a case one has to change either internal or
symmetry coordinates, to reduce coupling constants.
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With the following definitions (N(T)q denotes that part of
Nq which describes the six translations and rotations) 

(A19)

we obtain

(A20)

Since X is a square but not a symmetric matrix our pro-
gram cannot invert it. Thus:

(A21)

Note that XX+ is a symmetric square matrix. Thus our
new B matrix is

(A22)

Now the program adds the translations and rotations to
B, to get a square matrix. However, note that the proce-
dures outlined in the following work equally well for
square unsymmetric as for rectangular matrices. If B is
increased to a 3N×3N matrix, the same has to be done for
the symmetry coordinate matrix U. This implies simply
that for each translation or rotation in B one has to add a
symmetry coordinate in U, which has as its only compo-
nent just the internal translation or rotation coordinate
under consideration.

Now we have to compute a force constant matrix in
internal coordinates, Fb. To this end, a look at the poten-
tial energy V again shows the way:

(A23)

With B being either rectangular or not invertible with our
program, we have to resort to a trick:

(A24)

In this way it is easy to calculate Fb from Fx for any form of
B. A similar procedure we have when transforming Fb to
Fs, with the force constant matrix in symmetry coordinates:

(A25)

From this we can calculate Fs from Fb in the same way
as above. However, in almost all cases we use our pro-
gram for, U is a square orthogonal matrix, i.e. U –1= U+.
In this case we simply have Fs=UFbU+.

With b=Nbn and s=Nsn, it is easy to show that

(A26)
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